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Abstract 
A-OPSS fuses high performance reconfigurable proc-

essors with emerging fault-tolerance and autonomous 
processing techniques in order to realize high perform-
ance, autonomous sensor systems. By enabling fault-
tolerant use of high performance on-board processing the 
utility of sensor systems will be greatly enhanced, achiev-
ing 10-100x decrease in processing time, which directly 
translates into more science experiments conducted per 
day and a more thorough, timely analysis of captured 
data. This research also addresses the ability to quickly 
react and adapt processing or mission objectives in real-
time, by combining autonomous agents with reconfigur-
able computing techniques. Using A-OPSS, satellites, 
airborne or ground sensors will be able to perform high 
performance, fault tolerant computation, and develop 
situational awareness about their operating environment 
and tune or adapt the application algorithm such that 
they return the most useful and significant data to human 
and automated decision support systems.  This paper fo-
cuses on the first year’s efforts which revolve around de-
veloping robustness to radiation induced upsets that oc-
cur in the embedded PowerPC within Xilinx FPGAs. This 
work presents an analysis of the sensitive cross section of 
both the architecture and a SAR application parallelized 
over two PowerPC405s. We then introduce a series of 
fault tolerance software routines used by the High Per-
formance Computing (HPC) community and adapt them 
to an embedded system, such as the NASA GSFC devel-
oped SpaceCube 1.0. 
 
1. Introduction 

Over the past decade, the physics of CMOS at ad-
vanced process node feature sizes has entered a trade 
space where total ionizing dose (TID) is no longer much 
of a concern for modern devices in relatively low radia-
tion environments such as Low Earth Orbit (LEO), how-
ever Singe Event Upsets (SEUs) have become more pre-
valent.  Researchers have focused on both hardware and 
software techniques to mitigate radiation effects in 
SRAM-based Field Programmable Gate Arrays in order 
to address SEUs and make these devices radiation tolerant. 
This has proved to be a boon to the space community as 
these processors can deliver processing performance sev-
eral generations ahead of traditional radiation hardened by 
process devices, such as anti-fuse FPGAs.  

As technology has progressed, FPGAs have evolved 
from homogeneous sea of gates architectures, to hetero-
geneous system on a chip architectures containing multi-
pliers, multi-gigbit transceivers, Ethernet cores, and even 
embedded PowerPC processors. The embedded PowerPC 
in particular adds significant benefit to the space commu-
nity as now scientists, who may not be VHDL experts, 
have an easy migration path for their existing C programs 
to an embedded space platform.  This enables a rapid ap-
plication development cycle where core functionality is 
quickly achieved and then code migration to the FPGA 
fabric is performed gradually, targeting performance-
critical functions.  This development cycle is especially 
attractive to the space community as it allows a low-risk 
spiral development path that yields higher performance. It 
is also easy to build embedded space platforms with sev-
eral PowerPCs and scale performance as 2 PowerPCs are 
available in a single FPGA, and most current space hard-
ware contains several FPGAs.  

The downside however is that the embedded PowerPCs 
are susceptible to SEUs and new fault mitigation tech-
niques must be developed in order to make use of these 
attractive features. Traditional FPGA fault tolerance 
strategies can detect and correct errors within the FPGA’s 
bitstream;i,ii however, the bitstream does not contain the 
state of the embedded PowerPC cores, and consequently, 
errors within the PowerPC cannot be scrubbed. Addition-
ally, there are two, not three, PowerPCs per FPGA, so 
traditional Triple Modular Redundancy (TMR) techniques 
are awkward to apply.  

In this paper we describe our software-based fault tol-
erance strategies for PowerPC devices embedded within 
Xilinx Virtex 4 FX60 FPGAs.  Our work targets scientific 
applications operating on traditional space-based FPGA 
architectures consisting of an FPGA and a radiation-
hardened controller. These applications are more tolerant 
to data upsets and, to a limited extent, may trade reliabil-
ity for increased performance in space. To that end, our 
primarily goal is to detect and correct control flow and 
other catastrophic errors that would otherwise hang or 
crash the embedded PowerPCs.  We ignore small data 
errors that can be corrected in post-processing on the 
ground.  We use heartbeat monitoring, control flow asser-
tions, and checkpoint/rollback to achieve high perform-
ance and low overhead fault tolerance. 

 
 



2. Target Platform and Applications 
The application level fault tolerance strategies pre-

sented in this paper are generic enough to be utilized on 
any standard FPGA-based space platform, however as a 
proof of concept an engineering sample of the NASA 
SpaceCube 1.0iii is being targeted.  The SpaceCube is 
made up of three main components critical to this study: 2 
Xilinx Virtex 4 FX60 FPGAs and 1 8-bit micro-controller 
implemented in a radiation hardened Aeroflex FPGA.  
Each Virtex 4 FX60 FPGA contains two embedded 
PowerPC 405 cores.  With four PowerPC 405s, the 
SpaceCube represents a small computing cluster and is 
nearly 12 times more powerful than the RAD750.  For 
some building block experiments, this paper utilized the 
Xilinx ML410 development board, consisting of a single 
Virtex 4 FX60 FPGA allowing for a straightforward tran-
sition to the SpaceCube architecture.  For the ML-410 test 
set up, a host PC communicating via UART currently 
plays the role of the Aeroflex micro-controller in the 
SpaceCube.As mentioned previously, these techniques are 
focusing on the domain of science applications. This per-
tains to all of the NASA decadal survey missions, but 
especially so to all that could greatly benefit from high 
performance on-board processing, such as DESDyniiv, 
and autonomy, such as HyspIRIv. For this phase of the 
research, a synthetic aperture radar (SAR) application, 
representative of those being considered for DESDyni 
was utilized to implement the fault tolerant techniques on 
and measure performance. In future phases Hyperspectral 
imaging applications with autonomous scenarios will be 
considered. 

These applications and missions yield a set of assump-
tions that will largely drive our fault tolerance strategies. 
First, by looking at science applications we can assume 
that non-persistent data errors that can be cleaned up via 
ground based processing are acceptable, especially when 
the trade off is to provide more data in a timely manner. 
Second, these missions are largely in sun-synchronous 
orbits, which represent a relatively low radiation envi-
ronment, further relaxing the need for high overhead fault 

mitigation techniques. Third, these missions are not in 
continuous line of sight of a downlink station, which en-
ables techniques such as out of order execution as there is 
a fair amount of system buffering. Finally, these applica-
tions tend to be streaming in nature, meaning they have a 
high degree of inherent parallelism that can be exploited. 

The SAR application is representative of these scien-
tific applications in that it exhibits large degrees of data 
parallelism over the compute-intensive FFT loops.  When 
mapped to the SpaceCube architecture, this parallelism is 
exploited by dedicating a single PowerPC core to act as 
the master (performing coordination, file reads, etc.) and 
all other PowerPC cores acting as FFT-loop-level workers. 
This implementation will serve as our baseline as com-
pared to versions with fault tolerance added. 

 
3. PowerPC Analysis 

It is first necessary to establish a theoretical sensitivity 
of the PowerPC to help establish an estimate of the upper 
bound of the sensitive cross section and set design goals 
for the fault tolerance techniques. Unfortunately, the exact 
number of registers and transistors in the embedded Po-
werPC is impossible to know without the original VLSI 
design, however an architectural analysis can provide data 
accurate enough for these purposes.  Table 1 shows our 
estimate of the sizes of the key micro-architecture features 
within the PowerPC 405. The key point here is that the 
upper bound on the number of sensitive bits is about 
141Kbits. For reference, the Xilinx V4 FX60 configurable 
logic has 21.3Mbits, or a potentially 151x larger cross 
section.  

Table 1 PowerPC 405 Register Estimate 

Feature  Size  

Instruction Cache  16 KB +64 control  

Data Cache  16 KB + 64 control  

General Purpose Register Set  32 x 32bit  

Special Purpose Register Set  32 x 32bit  

Execution Pipeline  10 x 32bit  

ALU / MAC  ~1,200 bits  

Timers  3x 64bit  

MMU  72 x 68bits  

Misc  1024  

Total  ~140,880 bits  

It is important to realize that the upper bound estima-
tion is just an estimate and actual sensitivity will depend 
on the application, what architectural features it is using 

 
Figure 1 NASA’s SpaceCube 1.0 



and how it uses them. For example, initially in SRAM-
based FPGA studies, it was believed that the sensitive 
cross section was identical to the number of bits in the 
bitstream file it holds in memory. Additional experimen-
tation eventually proved that only about 1/100 of those 
bits are ever used at any time, meaning the cross section 
was about 100x smaller than first believed and making a 
large difference in the reliability estimates for FPGAs. 
Similar considerations need to be taken into account when 
analyzing the PowerPC. For example, if an OS is not used, 
supervisory mode cannot be used, and therefore several 
special purpose registers will never be used. Similarly, 
caches and MMUs can be disabled entirely or used in 
reduced manners to limit sensitivities. A key characteris-
tic of processors that is different than FPGAs is the time 
dynamic nature of registers, meaning that registers within 
the PowerPC may hold values that were at one time criti-
cal to an application’s function, but have already been 
used, and will eventually get over-written by new input 
data. From a sensitive cross section analysis then, there 
are a number of cases where the time at which an SEU 
occurs is important, as an SEU could flip a bit in a regis-
ter that has already been used and naturally get flushed by 
new incoming data and never show an impact on the re-
sults of the application. 

Overall the manual analysis of the embedded PowerPC 
architecture provides some interesting insights. First, we 
expect the upset rate to be about 100x smaller than the 
FPGA fabric. Secondly, if the assumption that scientific 
applications are tolerant to non-persistent data errors 
holds, the amount of protection needed on large structures 
such as data caches is greatly reduced. Finally, the sensi-
tive cross section is even further reduced as an SEU only 
has a small window of opportunity to impact a register 
while it is still critical to an application’s functionality. 
All of these factors point towards developing a fault toler-
ant strategy that protects the control structures of an ap-
plication first. 

 
4. Parallelizing SAR 

As described earlier, the parallel SAR application is 
implemented using a master-worker model. The master 
PowerPC is responsible for coordination, initialization, 
and I/O.  The master and worker both compute independ-
ent FFTs in parallel.  Communication and coordination 
between the two PowerPCs is achieved through the use of 
dedicated BRAMs.  The BRAMs provide a simple 
mechanism for the implementation of barrier synchroniza-
tion and an easy method for passing pointers between the 
two processors. 

The primary obstacle to achieving performance in our 
implementation is the lack of hardware cache coherency 
between the two PowerPC cores.  Disabling caching 
would have provided a straightforward implementation 
path at the cost of extremely poor performance.  Using 

write-through caching and strategic cache flushing pro-
vided a modest improvement; however, performance still 
lags far behind write-back caching.   

Enabling write-back caching required a thorough un-
derstanding of the memory and caching characteristics of 
the application.  The solution is to use a combination of 
cache flushing and proper cache alignment.  By cache-
aligning each row of the shared arrays and flushing cach-
es at synchronization points, we are able to avoid all 
cache coherency errors.   

Figure 3 presents the results of the parallel SAR im-
plementation with three caching options: no caching, 
write-through caching, and write-back caching.  Speedup 
is greatly limited by not having the cache enabled; how-
ever, such an implementation provides performance that 
is more than 2x slower than a single processor with cach-
ing enabled.  By enabling write-through caching the im-
plementation is easier; however, the increased memory 
transactions nearly eliminate all parallel improvement.  
By enabling write-back caching we are able to achieve 
parallel speedup and make productive use of both proces-
sors.  

5. Fault Tolerance Strategies 
The techniques described in this section focus on pro-

tecting the control flow of an application and include 
heartbeats, control flow assertions, and checkpointing and 
rollback.  To minimize the impact on the application de-
veloper, our fault tolerance strategies can be implemented 
after algorithm development is completed.  These meth-
ods can be applied with pre-compiler directives (e.g. con-
trol flow assertions) or by calling methods in a provided 
library (heartbeats and checkpointing/rollback) at desig-
nated points during application execution.  This post-
development flexibility allows the developer to choose 
which methods to apply to the application and at what 
points during execution to apply them. 

5.1. Monitor and Heartbeats 
For SpaceCube implementations, the radiation hard-

ened Aeroflex micro-controller serves as an application 
monitor that is responsible for maintaining the state of the 
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system and allocating computations to processors.  It acts 
as an application supervisor to ensure the system is func-
tioning as expected.  The monitor starts by assigning a 
task to a specific PowerPC.  Then, it observes the applica-
tion for any unexpected behavior.  If such a behavior is 
discovered, the monitor can decide to reassign that com-
putation to another processing element or to restart the 
application on the same one.   

The monitor receives heartbeat messages, which indi-
cate the current state of the computation, from each proc-
essing element in the system.  These heartbeat messages 
are sent to the application monitor at a regular interval.  
This interval can be chosen by the application developer 
and, upon expiration, triggers an interrupt for the 
PowerPC. If the monitor does not receive a heartbeat 
message from a PowerPC, or if a message arrives unex-
pectedly, it concludes that an upset has occurred and ei-
ther a rollback or reset takes place. 

Heartbeat messages also provide information about the 
state of the application and the processor.  For example, 
when an application starts or ends, a unique type of heart-
beat message is generated.  Similarly, when an application 
detects some sort of failure, a different heartbeat message 
is sent to the monitor.  The monitor verifies the contents 
of the heartbeat messages and decides on an appropriate 
course of action.  The action taken can be decided at the 
system level and applied to the application.  For example, 
if a computation is short, a checkpoint and rollback 
scheme may be unnecessary.  In this case, when an error 
is detected, the computation can be restarted instead of 
rolled-back. 

5.2. Control Flow Assertions 
Control flow assertions enable source code to perform 

a limited self-check at run-time in order to detect SEUs 
corrupting the program counter, loop counters, etc.vi  The 
advantage to using control flow assertions is that each 
PowerPC may evaluate its own progress without sending 
any messages to the rad-hard monitor.  This improves 
performance and scalability because it reduces the bus 
interaction with the monitor, and only requires control 
flow messages to be sent to the monitor when an error 
occurs.  The assertions may be implemented at either the 
compiler level or source code level. We chose to imple-
ment assertions at the source code level as a series of pro-
grammer-directed pragmas, allowing the developer to 
specify critical code paths with minimal overhead.  

The programmer adds assertions by inserting pairs of 
#pragma BEGIN var/#pragma END var statements at 
user-designated points in the source code.  A second util-
ity then transforms the assertion statements into standard 
C code.  Once assertions are added, control flow variables 
are checked at each #pragma END var statement for 
consistency.  If an error is detected, a flag is set and sub-
sequent heartbeats inform the monitor of the control flow 
error allowing corrective action to be taken either by re-

starting the computation or rolling back to a previous 
checkpoint.  A global incrementing counter, unique to 
each assertion variable, is also maintained.  This allows 
the heartbeat system to monitor application progress at a 
coarse grain.  If the counters stop incrementing, the heart-
beat monitor is alerted and corrective action is taken. 

5.3. Checkpointing and Rollback 
When a failure occurs, our primary corrective action is 

through checkpointing and rollback.  A user-level library 
was developed that allows the user to snapshot a running 
computation through the use of a simple checkpoint() and 
rollback() API.  The PowerPC’s major memory segments 
are captured and stored either to a file or, for improved 
performance, to memory.  After checkpointing, the heart-
beat system notifies the monitor that a checkpoint has 
been taken, and program execution continues normally.  
The monitor records the checkpoint event so that in case 
of failure the monitor is able to instruct the application to 
either rollback (if a checkpoint has been taken) or restart 
computation (if a failure occurs prior to a checkpoint). 

The major components of an application are easily 
checkpointable; however, there are some aspects that our 
checkpointing library is unable to snapshot.  Computa-
tional states that exist within the FPGA logic, for example, 
are not automatically captured.  Similarly all open files 
should be closed prior to checkpointing.  To help pro-
grammers cope with these requirements we allow the user 
to easily extend the checkpointing process with user-
defined callbacks. Callbacks allow the user to supply a 
function name (and argument) to the checkpoint() and 
rollback() API calls that will be called immediately prior 
to checkpointing and immediately after a rollback.  The 
programmer can use the callbacks to close open files be-
fore checkpointing and reopen the files after a rollback.  

 
6. Preliminary Data 

Fault injection in an FPGA is traditionally performed 
by reading the bitstream, selecting a bit to inject an error 
into, flipping the bit, and running test vectors to see if the 
upset causes an error in the results. Due to the fact that the 
PowerPC is not represented in the bitstream, even error 
injection is difficult and proving to be a research topic. 
Currently the best method is to utilize JTAG based ap-
proaches which can interact with Xilinx’s version of GDB 
to alter states in its debugger tools while executing an 
application. While these approaches yield some important 
data, they are only capable of injecting faults into the reg-
ister set and cannot reach important features such as the 
caches, execution pipeline, ALU etc. Work currently un-
derway under the A-OPSS project is expanding these fault 
injection techniques to consider these architecture features. 

Until these new fault injectors are brought online, test-
ing is limited to experiments using traditional JTAG fault 
insertion. Table 2 shows the results of register-based fault 
injection using the SPFI-ePPC fault injection toolvii.  This 



initial test set of 100 trials is encouraging since the data 
suggests that for injections into the register set, the major-
ity of failures do not manifest as silent data corruption.  In 
fact, only 2% resulted in silent data corruption, while 89% 
resulted in no observable errors at the application level. 
The 8% of the injections that resulted in an observable 
application crash can be easily detected by the monitor. 

Figure 3 represents the preliminary fault tolerance re-
sults measured on a Xilinx ML410 board.  SAR is paral-
lelized over 2 PowerPC cores and performance is meas-
ured against a baseline parallel SAR (no fault tolerance), 
parallel SAR with heartbeats and assertions, and finally 
parallel SAR with heartbeats, assertions, and a single 
checkpoint to either compact flash or DRAM. Heartbeats 
and assertions contribute little overhead and maintain 
99% efficiency.  Clearly, checkpointing to compact flash 
incurs a much higher overhead (78% efficiency) than 
checkpointing to DRAM (98% efficiency).  The advan-
tage to checkpointing to compact flash is that checkpoints 
survive device resets and reprogramming and DRAM 
usage is not increased.  In practice these tradeoffs should 
be evaluated per-application. 

In Figure 5 we compare our AOPSS fault tolerance in-
frastructure to traditional duplication, TMR, and QMR (2 
CPUs, 3 CPUs and 4 CPUs).  We project the performance 
of 3 and 4 CPUs based on a 1.4x speedup for each dou-
bling of processors (the same we achieved from our ini-

itial 2 CPU implementation).  Clearly AOPSS demon-
strates improved resource utilization over the existing 
techniques.  

 
 

7. Conclusions and Future Work 
A high performance and low overhead fault tolerance 

strategy targeting scientific applications on the Space-
Cube 1.0 platform has been presented and initial steps 
towards experimental proof have been taken. In the 
upcoming year this work will further be enhanced by per-
forming more fault injection testing using fault emulators 
capable of addressing more of the PowerPC architecture 
as well as performing radiation beam testing. With the 
fault tolerant architectural groundwork laid, the team will 
expand the application base to consider autonomous ap-
plication scenarios, such as Hyperspectral image pre-
processing and downlink prioritization. 
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Figure 3: Efficiency of fault tolerance strategies normal-

ized to parallel SAR (2 PowerPCs) without fault tolerance. 
 

Table 2 Register Set Error Injection Results 
Injection Results Percentage occurring 
Data Corruption 2% 
Crash 8% 
Injection Failure 1% 
No Effect 89% 
 

 
Figure 5: AOPSS performance vs. traditional strategies.   


